翻訳と辞書
Words near each other
・ János Kalmár
・ János Kamara
・ János Kardos
・ János Kass
・ János Kemény
・ János Kemény (author)
・ János Kende
・ János Kertész
・ János Kerényi
・ János Kintzig
・ János Kis
・ János Kiss
・ János Kodolányi
・ János Kollár
・ János Komlós
János Komlós (mathematician)
・ János Komlós (writer)
・ János Konrád
・ János Koppány
・ János Kornai
・ János Koszta
・ János Kovács
・ János Kriesch
・ János Kristófi
・ János Krizmanich
・ János Kulcsár
・ János Kulka
・ János Kuszmann
・ János Kádár
・ János Kóka


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

János Komlós (mathematician) : ウィキペディア英語版
János Komlós (mathematician)
János Komlós (Budapest, 23 May 1942) is a Hungarian-American mathematician, working in probability theory and discrete mathematics. He has been a professor of mathematics at Rutgers University〔(Rutgers faculty profile for Komlós ).〕 since 1988. He graduated from the Eötvös Loránd University, then became a fellow at the Mathematical Institute of the Hungarian Academy of Sciences. Between 1984–1988 he worked at the University of California at San Diego.〔(UCSD Maths Dept history )〕
==Notable results==

* He proved that every L1-bounded sequence of real functions contains a subsequence such that the arithmetic means of all its subsequences converge pointwise almost everywhere. In probabilistic terminology, the theorem is as follows. Let ξ12,... be a sequence of random variables such that ''E''(),''E''(),... is bounded. Then there exist a subsequence ξ'1, ξ'2,... and a random variable β such that for each further subsequence η12,... of ξ'0, ξ'1,... we have (η1+...+ηn)/n → β a.s.
* With Ajtai and Szemerédi he proved〔M. Ajtai, J. Komlós, E. Szemerédi: A note on Ramsey numbers,
''J. Combin. Theory Ser. A'', 29(1980), 354–360.〕 the ''ct''2/log ''t'' upper bound for the Ramsey number ''R''(3,''t''). The corresponding lower bound was proved by Kim only in 1995, this result earned him a Fulkerson Prize.
* The same team of authors developed the optimal Ajtai–Komlós–Szemerédi sorting network.〔; .〕
* Komlós and Szemerédi proved that if ''G'' is a random graph on ''n'' vertices with
\frac12n\log n+\frac12n\log\log n+cn

:edges, where ''c'' is a fixed real number, then the probability that ''G'' has a Hamiltonian circuit converges to
e^{-e^{-2c}}.

* With Gábor Sárközy and Endre Szemerédi he proved the so-called blow-up lemma which claims that the regular pairs in Szemerédi's regularity lemma are similar to complete bipartite graphs when considering the embedding of graphs with bounded degrees.〔J. Komlós, G. Sárközy, Szemerédi: Blow-Up Lemma, ''Combinatorica'', 17(1997), 109–123.〕
* Komlós worked on Heilbronn's problem; he, János Pintz and Szemerédi disproved Heilbronn's conjecture.
* Komlós also wrote highly cited papers on sums of random variables,〔.〕 space-efficient representations of sparse sets,〔. A preliminary version appeared in 23rd Symposium on Foundations of Computer Science, 1982, .〕 random matrices,〔.〕 the Szemerédi regularity lemma,〔.〕 and derandomization.〔.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「János Komlós (mathematician)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.